

Journal of Fluorine Chemistry 71 (1995) 209-210

Perfluoro/polyfluoroalkoxylsulfonyl fluorides — precursors to new ion conductors, fuel cell electrolytes and polymeric coatings

N.N. Hamel a, S. Ullrich a, G.L. Gard a,*, R.L. Nafshun b, Z. Zhang b, M.M. Lerner b

^a Chemistry Department, Portland State University, Portland, OR 97207-0751, USA ^b Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, OR 97331-4003, USA

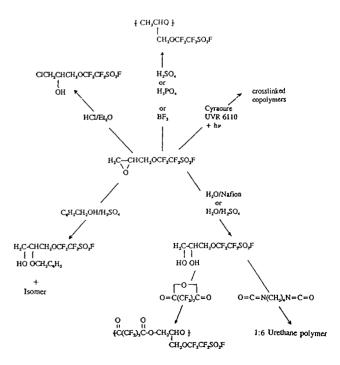
Keywords: Perfluoro/polyfluoroalkoxylsulfonyl fluorides; Lithium salt complexes; Copolymeric film formation; X-Ray photoelectron spectroscopy; Secondary ion mass spectrometry

1. Introduction

Pefluoro/polyfluoroalkoxylsulfonyl fluorides continue to be subjects of considerable interest because of their utility in preparing advanced materials containing the sulfonyl fluoride grouping (=SO₂F) or its derivatives.

2. Results and discussion

2.1. Perfluoroalkanesulfonyl fluorides, FSO₂(CF₂)_nSO₂F


These compounds were converted to their corresponding sulfonic acids, $HSO_3(CF_2)_nSO_3H$ with n=2, 4, 6, and lithium salts, $LiSO_3(CF_2)_nSO_3Li$ with n=1-4. Evaluation of the acids as fuel cell electrolytes [1] and of the lithium salts as ion conductors have been carried out [2].

2.2. SF_5 sultones, $SF_5C\overline{XCF_2OSO_2}$ (X=H,F)

SF₅-containing sultones were used to prepare the following SF₅-containing acids: SF₅CH₂SO₃H, SF₅CHFSO₃H and SF₅CF₂SO₃H. The possible use of these acids as fuel cell electrolytes looks promising. Lithium salt complexes over the stoichiometric range $(CH_2CH_2O)_x$ LiA $(A=SF_5CFHSO_3, SF_5CF_2SO_3)$ with x=4-16 have been prepared and evaluated [2]. Surprisingly, these complexes showed conductivities in the range reported for complexes of polyethylene oxide with LiN(SO₃CF₃)₂ and LiC(SO₃CF₃)₃.

2.3. Epoxyalkylsulfonyl fluoride, OCH₂CHCH₂OCF₂CF₂SO₂F

This epoxide was used to prepare a number of interesting derivatives as shown in Scheme 1 [3,4]. Photocured copolymer films containing various amounts of FSO₂ epoxide monomer and a commercial cycloaliphatic diepoxide were analyzed by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy. Preliminary results indicated significant fluorine concentrations in the outer surface of the film [5].

Scheme 1. Compounds derived from epoxyalkylsulfonyl fluoride, OCH₂CHCH₂OCF₂CF₂SO₂F.

^{*} Corresponding author.

References

- [1] H. Saffarian, P. Ross, F. Behr and G.L. Gard, J. Electrochem. Soc., 139 (1992) 2391.
- [2] In-house work at Portland State University and Oregon State University.
- [3] N.N. Hamel, G.A. Russell and G.L. Gard, *J. Fluorine Chem.*, 66 (1994) 105.
- [4] N.N. Hamel and G.L. Gard, J. Fluorine Chem., 68 (1994) 253.
- [5] D.D. Castner, D.N. Grainger and G.L. Gard, personal communication, 1994.